The Crystal and Molecular Structure of 3-Nitroperchlorylbenzene*

By GUS J. PALENIK[†]

U.S. Naval Ordnance Test Station, China Lake, California 93555, U.S.A.

Jerry Donohue‡

Department of Chemistry, University of Southern California, California 90007, U.S.A.

AND K. N. TRUEBLOOD

Department of Chemistry, University of California, Los Angeles, California 90024, U.S.A.

(Received 14 August 1967)

3-Nitroperchlorylbenzene forms acicular crystals, with space group $Pbn2_1$ (No.33). There are four molecules in the unit cell with a = 14.717, b = 10.707, and c = 5.032 Å. The structure was solved from a sharpened three-dimensional Patterson function and refined by Fourier syntheses and full-matrix least-squares methods. The final residual, R, for the 745 observed reflections, measured with a scintillation counter, is 0.066. The benzene ring, with an average C-C distance of 1.380 ± 0.010 Å, is planar but the nitro group is twisted by 13° from this plane. Decreased resonance interaction between the nitro group and the aromatic ring contributes to the long C-N distance of 1.497 Å. The C-Cl distance of 1.786 Å is long compared with a C-Cl bond where the Cl atom is unsubstituted. Large thermal motions in both the nitro and perchloryl groups reduced the accuracy of the bond lengths of N-O, average 1.25 Å, and Cl-O, average 1.45 Å; however, the values in both cases are comparable to the distances found in similar compounds.

Introduction

The preparation of perchlorylaromatic compounds by Inman, Oesterling & Tyczkowski in 1958 provided the possibility of determining the geometry of the perchloryl group in an organic environment. At that time there had been few precise structure analyses of either organic or inorganic compounds containing the nitro or perchloryl group. The presence of both groups on the same aromatic nucleus prompted us to initiate a determination of the crystal structure of 3-nitroperchlorylbenzene (3-NPCB) late in 1958, but for various reasons the study was not completed for nearly 8 years.

Experimental

The preparation of 3-NPCB, $C_6H_4CINO_5$, was carried out using a procedure similar to that given by Inman, Oesterling & Tyczkowski (1958). Transparent acicular crystals elongated in the c direction were grown by evaporation of an alcohol solution. The crystals have an appreciable vapor pressure and were coated with a thin layer of polystyrene to decrease losses by sublimation.

Equi-inclination Weissenberg photographs (Cu $K\alpha$, $\lambda = 1.5418$ Å) were taken with the needle axis as the

§ Contribution No. 2110.

rotation axis for crystal 1, l=0 to 2, and for crystal 2, l=0 to 3. A small fragment was cleaved from a larger crystal and mounted with [110] as the rotation axis; only the zero layer was recorded because this crystal was too small to give good intensity photographs. The intensities from the zero layer about [110] were used to correlate the data from the various layers about **c**. The resulting set of 659 observed reflections will be designated the visual data (VD).

The only systematic absences on the above photographs are:

> 0kl absent if k = 2n + 1h0l absent if h + l = 2n + 1.

Thus, the space group is either $Pbn2_1$ (C_{2v}^9) or Pbnm (D_{2h}^{16}). The unit-cell dimensions, determined from Weissenberg photographs calibrated with NaCl powder patterns, are a = 14.74, b = 10.74 and c = 5.04 Å. These dimensions and the space group possibilities are similar to those of *m*-dinitrobenzene (Trotter & Williston, 1966). Consequently, the space group was initially assumed to be $Pbn2_1$ and the unconventional setting was retained for possible comparison with *m*-dinitrobenzene. The structure analysis confirmed this choice of space group; however, the two compounds are not closely related structurally.

Over a period of about 6 years crystals of 3-NPCB had grown on the sides of the sample tube by sublimation at room temperature. For reasons described below it appeared essential to obtain a more precise set of intensity data. One clear, well-developed crystal was selected and cleaved with a razor blade to give a fragment $0.12 \times 0.17 \times 0.22$ mm, which was sealed in a

^{*} This work was supported in part by the Directorate of Chemical Sciences of the U.S. Air Force Office of Scientific Research, Grant AF 49(638)-719.

[†] Present address: Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada.

[‡] Present address: Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A.

thin-walled capillary. The crystal was dipped in liquid nitrogen to minimize primary extinction, and then mounted on a General Electric single-crystal orienter. The long dimension of the crystal (the c axis) was parallel to the φ axis of the orienter. The unit-cell dimensions were determined by measuring the 2θ values that could be observed for the h00, 0k0 and 00l reflections using a narrow beam of Mo $K\alpha$ radiation ($\alpha_1 =$ 0.70926 and $\alpha_2 = 0.71354$ Å). The average dimensions, together with their e.s.d.'s, are

$$a = 14.717 \pm 0.008 \text{ Å}$$

 $b = 10.707 \pm 0.006$
 $c = 5.023 \pm 0.004$

These dimensions are in reasonable agreement with the values measured from the Weissenberg photographs and were used in all calculations of geometry quoted below. The density calculated for four molecules per unit cell is 1.722 g.cm^{-3} ; that measured by flotation in a CCl₄-CBr₄ solution is 1.70 g.cm^{-3} .

The second set of intensities was measured with a General Electric Diffractometer which had been automated by the Datex Corporation. The stationary crystal-stationary counter technique was employed in measuring 2973 reflections of the type hkl and hkl with $2\theta < 60.0$ (Mo radiation). A 20-sec count was taken for each reflection with a Zr filter at the counter window. Four standard reflections were checked after each 75 intensity measurements. The largest and smallest numbers of counts differed by less than 10% in all four cases and there were no apparent trends with time.

The reflections of the type 0kl with k=2n+1 and h0l with h+l=2n+1, which are required by the space group to be absent, were also surveyed and these 176 reflections were then used to calculate a background correction as a function of 2θ . Reflections which were greater than 1.2 times the appropriate background count were considered to be observed. The final set of counter data (CD) consisted of 745 observed reflections out of the 1274 independent reflections in the portion of the reciprocal lattice that was surveyed.

Determination and refinement of the trial structure

(a) The visual data

A sharpened three-dimensional Patterson synthesis with the origin peak removed was calculated. The Cl–Cl vectors were easily recognized, but the y parameter of the Cl atom was approximately zero so that the heavy atom method could not be easily applied. However, a consideration of the Cl–light atom vectors in a model of the molecule yielded a plausible trial structure. It was apparent that the molecule does not lie in a plane normal to **c** and thus the space group must be $Pbn2_1$.

The centrosymmetric projection down c is fairly well resolved and was refined first. Successive Fourier syntheses reduced the usual residual R to 0.20 for the 182 observed *hk*0 reflections (VD). The *z* coordinates were then estimated from the projected distances by a comparison with the expected values and a three-dimensional Fourier synthesis was calculated. At this point, R was 0.27 for the complete set of three-dimensional data.

Refinement was continued using least-squares methods, with 3×3 blocks for the positional parameters and 6×6 blocks for the anisotropic thermal parameters. Partial shifts of 3/4 for positional and 3/8 for thermal parameters were employed. The z coordinate for the Cl atom was fixed at 0.000 to define the origin in the polar space group. The value of R dropped to 0.11and since there were no detectable trends in the various small shifts in the final cycles, the refinement was considered completed. Unfortunately, the geometry of the molecule as calculated with the final least-squares parameters was chemically unreasonable, although the crystal structure determination seemed acceptable by most standards. The three Cl-O distances varied from 1.35 to 1.45 Å, with an estimated standard deviation of 0.015 Å, and the C-C distances in the benzene ring varied from 1.33 to 1.42 Å.

When more powerful computing facilities became available, a full-matrix refinement of the data was carried out. The final parameters were not significantly different from those obtained by the block approximation. We felt that the inconsistencies might have resulted from inadequate interlayer scaling and so a refinement was carried out in which an individual scale factor for each layer was allowed to vary. The distances and angles in the molecule did not improve to any significant degree. Collection of a more precise set of intensities seemed essential to determine whether the apparent asymmetry of the molecule was indeed real.

(b) The counter data

The starting positional parameters for the fullmatrix least-squares refinement based on the counter data were those from the three-dimensional Fourier synthesis calculated with the VD. Initially, the positions, one isotropic thermal parameter per atom and a single overall scale factor, 52 parameters in all, were refined. The function minimized was $\Sigma w(\Delta F)^2$, with the following weighting scheme:

$$w = F_o/40$$
 if $F_o < 40$
 $w = 1$ if $40 < F_o < 200$
 $w = 200/F_o$ if $F_o > 200$.

After four cycles, the residual R was 0.116. Anisotropic thermal parameters were then introduced giving a total of 117 parameters, and the full-matrix refinement was continued. After 5 cycles R had converged to 0.075 and a difference Fourier synthesis was calculated. The four hydrogen atoms were readily located and were included in the structure factor calculation, but their parameters were not refined. Three least-squares cycles reduced R to 0.066 and the refinement was terminated. The final shifts averaged less than 2% of the corresponding estimated standard deviations. The final positional parameters are given in Table 1 and the thermal

parameters in Table 2. A final difference electron density synthesis was calculated, omitting the hydrogen atoms. The hydrogen atom positions obtained from this synthesis are listed in Table 1. A difference synthesis through the plane of the benzene ring is illustrated in Fig. 1. The hydrogen atom peak heights are 0.5, 0.4, 0.4 and 0.5 e.Å³ and the estimated standard deviation of the electron density is about 0.09 e.Å³. The final structure factors calculated with the parameters given in Tables 1 and 2 are listed in Table 3. The scattering factors were taken from International Tables for Crystallography (1962), except for carbon, which was taken from McWeeny (1951). No correction was made for anomalous dispersion in the case of the chlorine atom in the polar space group, Pbn21. Cruickshank & McDonald (1967) estimated that for molybdenum

Fig. 1. A difference Fourier synthesis through the plane of the benzene ring which illustrates the probable positions of the hydrogen atoms. Contours are at approximately $0.1 \text{ e.} \text{Å}^{-3}$, with the lowest contour at $0.2 \text{ e.} \text{Å}^{-3}$.

Table 1. Final positional parameters and their estimated deviations

Values for all atoms $\times 10^4$ except for the hydrogen atoms, which are 10³. E.s.d.'s in parentheses. Hydrogen atom positions are from the final difference map (see text).

	X	У	Z
C(1)	1411 (5)	1306 (7)	1906 (19)
C(2)	0580 (5)	1904 (7)	1893 (21)
C(3)	0543 (5)	2914 (7)	3546 (21)
C(4)	1253 (5)	3300 (7)	5119 (32)
C(5)	2069 (5)	2700 (8)	4960 (38)
C(6)	2155 (5)	1653 (8)	3345 (23)
O(1)	2428 (5)	-0281 (8)	-0520 (26)
O(2)	1119 (6)	- 1045 (6)	1605 (23)
O(3)	0976 (6)	0103 (7)	- 2299 (18)
O(4)	-0458 (5)	4307 (9)	5531 (26)
O(5)	-0911 (4)	3320 (7)	2073 (24)
N	-0354 (4)	3556 (7)	3745 (23)
C1	1489 (1)	-0089 (2)	*
H(2)	006	161	052
H(4)	101	407	640
H(5)	265	290	571
H(6)	267	127	296

* Arbitrarily set equal to zero to fix the origin in the polar space group. The average correlation coefficient between the z parameters of different atoms was only ca. 0-1, because the chlorine atom is significantly heavier than the other atoms and its z parameter was fixed. The possible error in the z coordinate of the chlorine atom caused by neglect of anomalous dispersion is only about one-half of the e.s.d. in the z parameter of any of the other atoms.

radiation with a sulfur atom the maximum error would be 0.005 Å. The large thermal motion in 3-NPCB at room temperature prohibits this precision.

Discussion

Libration corrections were estimated for the benzene ring and the bonds from the ring to the nitrogen and chlorine atoms by treating these eight atoms as a rigid body (Schomaker & Trueblood, 1968). The resulting libration tensor (Table 4) was used for making corrections to the intramolecular distances (Cruickshank, 1961*a*). The fit of these eight atoms to the rigid-body model was about as good as the data warranted, the

Table 2. Final thermal parameters and their estimated standard deviations

All values have been multiplied by 10⁴. The temperature factor for an atom is of the form $\exp \left[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + \beta_{12}hk + \beta_{13}hl + \beta_{23}kl)\right]$

	β_{11}	β_{22}	β33	β_{12}	β_{13}	β_{23}
C(1)	37 (3)	82 (6)	242 (31)	-21(8)	16 (21)	- 74 (27)
$\tilde{\mathbf{C}}(2)$	42 (3)	78 (7)	369 (40)	-11(8)	-16 (24)	-4 (33)
Č(3)	37 (3)	78 (7)	398 (43)	4 (8)	16 (23)	24 (34)
$\mathbf{C}(4)$	42 (3)	94 (7)	542 (48)	-15 (8)	-6 (34)	-117 (54)
$\tilde{\mathbf{C}}(\tilde{5})$	41 (4)	122 (9)	687 (58)	-12 (9)	- 76 (42)	- 89 (64)
C	32 (3)	93 (7)	512 (51)	23 (8)	-48 (24)	- 52 (38)
où	54 (3)	205 (10)	1136 (82)	- 19 (10)	136 (32)	- 488 (58)
$\tilde{O}(2)$	98 (5)	88 (6)	726 (54)	1 (9)	41 (32)	- 50 (33)
$\tilde{\mathbf{O}}(\tilde{3})$	96 (5)	151 (9)	438 (34)	-44 (12)	- 38 (24)	-127 (37)
O(4)	59 (4)	156 (8)	973 (81)	44 (9)	14 (30)	-232 (50)
Õ(5)	47 (3)	163 (9)	902 (58)	48 (9)	-159 (27)	-84 (47)
N	35 (3)	79 (6)	695 (56)	16 (7)	-17 (25)	10 (36)
Ĉ	46 (1)	100 (2)	503 (10)	-22(2)	42 (9)	-117 (12)

The five columns in each group contain the values, reading from left to right, of h, $10F_o$, $10F_c$, $10A_c$, and $10B_c$. A negative F_o indicates an unobserved reflection which was not included in the least-squares refinement.

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	<pre> ()</pre>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	j iii -iii jii -iii -iiii -iii -iiii -iiiii -iiii -iiii -iiii -iiii -iiii -iiii -iiii -iiii -iiii -iiiii -iiiii -iiiii -iiiii -iiiii -iiiii -iiiii -iiiiii -iiiiiii -iiiiiiiii -iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

r.m.s. difference of the observed and calculated U_{ij} being 0.0040 Å², about 7% of the average mean square amplitude, which is comparable to the e.s.d.'s of the B_{ij} in Table 2. The principal libration axis is essentially parallel to the Cl–N vector, deviating from it by only 3°. The effective screw motion is very small. The corrected bond distances are given in Table 5 and are illustrated in Fig.2. The apparent inconsistencies of the structure obtained from the visual data were clearly specious.

Table 4. Parameters for the eight-atom rigid body*

Libration tensor[†], L (°)²

(26 (4)	-10(5)	-10(4)
1	34 (6)	10 (4)
1		9 (4)

Principal axis representations

			Direct	ion cosines	$(\times 10^{3})$
		Eigenvalue	a	b	с
	L	46 (°) ²	558	- 751	-352
		19	765	630	- 131
		3	320	- 196	927
Reduced	Т	0·0436 Ų	330	- 902	- 279
		0.0380	231	364	- 902
		0.0356	915	233	328

Displacement of libration axes from intersecting $2_{\varrho 1} - 3_{\varrho 1} = 0.21$ Å; $3_{\varrho 2} - 1_{\varrho 2} = -1.25$ Å; $1_{\varrho 3} - 2_{\varrho 3} = -0.29$ Å.

* Calculated from the thermal parameters by the method of Schomaker & Trueblood (1968). The eight atoms are the six carbon atoms, the nitrogen, and the chlorine (see text). Standard deviations for the components of L are in parentheses.

† Expressed in the crystal axial system.

The average (corrected) C–C distance in the benzene ring is 1.380 ± 0.010 Å, not significantly different from the distances reported for benzene [1.392 Å (Cox, Cruickshank & Smith, 1958) and 1.397 Å (Stoicheff, 1954)]. The ring is effectively planar; the deviations

Fig. 2. Libration-corrected bond distances (Å). Those in parentheses have not been corrected for thermal motion; the corrections vary from 0.03 to 0.06 Å (see text).

Table 5. Intramolecular distances and angles*

(a) Bond distances	and angles	
	Uncorrected	Corrected for
C(1)-C(2)	1·380 Å	1·386 Å
C(2)-C(3)	1·366	1·372
C(3)-C(4)	1·374	1·384
C(4)-C(5)	1·365	1·369
C(5)-C(6)	1·390	1·395
C(6)-C(1)	1·364	1·375
C(1)-C1	1·779	1·786
C(3)-N	1·492	1·497
N-O(4)	1·215	1·26
N-O(5)	1·201	1·24
C1-O(1)	1·421	1·48
C1-O(2)	1·413	1·45
C1-O(3)	1·397	1·43
C(1)-C(2)-C(3)	113.6°	113·3°
C(2)-C(3)-C(4)	123.9	124·1
C(3)-C(4)-C(5)	119.6	119·7
C(4)-C(5)-C(6)	119.6	119·5
C(5)-C(6)-C(1)	117.2	117·2
C(6)-C(1)-C(2)	126.0	126·1
C(2)-C(1)-C1	116·3	116·1
C(6)-C(1)-C1	117·6	117·7
C(2)-C(3)-N	116·2	115·9
C(4)-C(3)-N	119·7	119·9
$\begin{array}{c} C(3)-N-O(4)\\ C(3)-N-O(5)\\ O(4)-N-O(5)\\ C(1)-C1-O(1)\\ C(1)-C1-O(2)\\ C(1)-C1-O(3)\\ O(1)-C1-O(2)\\ O(1)-C1-O(3)\\ O(2)-C1-O(3)\\ O(2)-C1-O(3)\\ \end{array}$	118 117 125 106 107 107 112 113 112	

* The e.s.d.'s of the bond distances average about 0.010 Å and those of the bond angles about 0.6° .

[†] Bond distances involving the oxygen atoms were corrected by assuming a riding motion; see text.

(b) Nonbonde	d distances (u	ncorrected for therm	al motion)
C(1) - O(1)	2·57 Å	O(1)–O(2)	2·35 Å
C(1) - O(2)	2.56	O(1)–O(3)	2.35
C(1)–O(3)	2.56	O(2)-O(3)	2.33
C(2) = O(1)	3.79	C(6) = O(1)	2.87
C(2) - O(2)	3.26	C(6) - O(2)	3.38
C(2) - O(3)	2.92	C(6) - O(3)	3.72
H(2)-O(2)	3.3	H(6)–O(1)	2.4
H(2) - O(3)	2.5	H(6) - O(2)	3.4
H(2)–O(5)	2.5	H(4)–O(4)	2.2
C(2) = O(5)	2.67	C(4)–O(4)	2.75
O(4) - O(5)	2.14		

from the least-squares plane are given in Table 6. The C(2)-C(1)-C(6) and C(2)-C(3)-C(4) angles are both significantly greater than 120°. Bailey & Prout (1965) and Carter, McPhail & Sim (1966) have both noted that the C-C-C angle at a trigonal carbon atom attached to a nitro group is always appreciably larger than 120°. In 3-NPCB the effect of the ClO₃ group is

similar to that of a nitro group, as was expected. Carter, McPhail & Sim (1966) have suggested that the strong electron-withdrawing power of the NO₂ group leads to less than $\frac{1}{3}s$ character in the C–N bond. The corresponding increase in *s* character in the C–C bonds to the *ortho* carbon atoms leads to an opening of the C–C–C angle.

The C-Cl distance of 1.786 ± 0.008 Å is one of the longest C(aromatic)-Cl distances reported to date. The twenty-six C-Cl distances tabulated in Table 7 average 1.737 ± 0.016 Å, significantly shorter than the C-Cl distance found in this study. Indeed, the longest of the distances tabulated in Table 7, all of which involve a chlorine atom bonded to only one other atom, is 0.02 Å shorter than the distance found in 3-NPCB. It is reasonable that the single-bond radius for a chlorine atom increases with increasing substitution on the atom; a similar effect is well known for carbon.

The perchloryl and nitro groups are both librating appreciably, as is usually the case with nitro groups. Approximate corrections for the thermal motion were calculated by the procedure suggested by Leung & Marsh (1958) which is equivalent to the 'riding motion' of Busing & Levy (1964). Clearly, the Cl-O distances (Table 5), which average 1.45 Å, have not been determined with a great deal of precision. Nevertheless, the average Cl-O distance is in good agreement with the 1.46 ± 0.01 Å reported by Truter, Cruickshank & Jeffrey (1960) in NO⁺₂ClO⁻₄. The fact that the Cl-O bond length is slightly (although not significantly) shorter in 3-NPCB is in line with arguments given by Cruickshank (1961b) in a general discussion of MO^{*}₄ions and related species. Essentially the π -bonding is divided among the three Cl-O bonds in 3-NPCB but is distributed over all four Cl-O bonds in the perchlorate ion. The plane defined by the three oxygen atoms of the ClO₃ group is perpendicular to the C-Cl bond, but makes an angle of 85° with respect to the benzene ring. The tilting of the plane of the ClO₃ oxygen atoms increases the C(2)-O(3) and C(6)-O(1) nonbonded distances to 2.92 and 2.87 Å respectively. The orientation of the ClO₃ group with respect to the benzene ring also minimizes the nonbonded repulsions.

Fig. 3. Bond angles (°), torsion angle of the nitro group, and some intramolecular non-bonded O...H distances. The two angles not shown are C(1)-C1-O(2), 107 and O(1)-C1-O(3), 113.

Table 6. Least-squares planes

Deviations in boldface type indicate atoms which were used to define the plane. Planes and deviations from plane $(Å \times 10^3)$

	Ι	II	III	IV	v
C(1)	11	14	35		
C(2)	6	17	34		
C(3)	10	28	0	3	
C(4)	-22	-11	52		
C(5)	18	15	8		
C(6)	-2	-13	27		
CI		-159	- 50		
O(1)	343	316	452		0
0(2)	-1520	-1533	-1416		Ō
O(3)	613	607	721		0
N	- 54	- 21	- 86	-12	
0(4)	- 294	-255	- 360	4	•
O(5)	178	217	163	4	
		Parameters	of the plane	*	
$A \times 10^4$	3006	2915	3035	3498	-0614
$B \times 10^4$	5931	5984	5703	7352	8432
$C \times 10^4$	- 7469	- 7463	- 7633	- 5806	5341
D(Å)	-0.748	_0.741	-0.661	1.524	0.612

* Equation of the plane in the form

Deviation (Å) =
$$AX + BY + CZ + D$$

T

with X, Y, Z the coordinates of the atom in Å.

1144

Table 7. Carbon-chlorine bond distances in various aromatic molecules

Compound	Distance	Reference
Bis-(5-chlorosalicylaldoximato)copper(II)) 1.76	1
N-Methyl-p-chlorobenzaldoxime	1.768	2
svn-p-Chlorobenzaldoxime	1.728	2
2-Chloro-4-nitroaniline	1.766	3
o-Chlorobenzoic acid	1.737	4
2-Chloro-5-nitrobenzoic acid	1.753	5
<i>p</i> -Dichlorobenzene	1.74	6
9.10-Dichloroanthracene	1.74	7
4.4'-Dichlorodiphenvl sulfone	1.736	8
Di- <i>p</i> -chlorodiphenyltellurium dijodide	1.75	9
1.4.5.8-Tetrachloronaphthalene	1.74	10
Tetrachloro- <i>p</i> -benzoquinone	1.714	11
2.5-Dichloroaniline	1.744	12
Tetrachlorohydroguinone	1.73	13
Pentachlorophenol	1.71	13
N-5-Chlorosalicylideneaniline	1.752	14
2	1.755	
2-Chloro-N-salicylideneaniline	1.737	15
Di- <i>p</i> -chlorophenyl hydrogen phosphate	1.735	16
2-Chloro-3-hydroxy-1.4-naphthoguinone	1.72	17
2-Chloro-3-amino-1.4-naphthoquinone	1.71	18
1-(4-Chlorobenzyl)-1-nitroso-2-(4.5-dihyd	dro-	
-2-imidazolvl)hvdrazine monohvdrate	1.732	19
<i>a</i> -Chlorobenzovlacetylene	1.734	20
Chloranilic acid	1.717	21
Chloranilic acid monohydrate	1.720	22
Ammonium chloranilate monohydrate	1.741	23

References: 1, Orioli, Lingafelter & Brown (1964); 2, Folting, Lipscomb & Jerslev (1964); 3, McPhail & Sim (1965); 4, Ferguson & Sim (1961); 5, Ferguson & Sim (1962); 6, Frasson, Garbuglio & Bezzi (1959); 7, Trotter (1959); 8, Sime & Abrahams (1960); 9, Chao & McCullough (1962); 10, Gafner & Herbstein (1962); 11, Chu, Jeffrey & Sakurai (1962); 12, Sakurai, Sundaralingam & Jeffrey (1963); 13, Table 15 of reference 12; 14, Bregman, Leiserowitz & Schmidt (1964); 15, Bregman, Leiserowitz & Osaki (1964); 16, Calleri & Speakman (1964); 17, Gaultier & Hauw (1965*a*); 18, Gaultier & Hauw (1965*b*); 19, Palenik (1965); 20, Ferguson & Islam (1966); 21, Andersen (1967*a*); 22, Andersen (1967*b*); 23, Andersen (1967*c*).

The angle between the planes defined by C(1)-Cl-O(3)and C(2)-C(1)-Cl is 37° and that between C(6)-C(1)-Cland C(1)-Cl-O(1) is 24°, close to the ideal value of 30°. The angle between the planes C(1)-Cl-O(2) and C(2)-C(1)-Cl is 81° and between C(1)-Cl-O(2) and C(6)-C(1)-Cl is 95°, which is close to the ideal value of 90°. The three O-Cl-O angles are all greater than the tetrahedral value of 109°28′, while the corresponding C-Cl-O angles are all smaller than the tetrahedral value. The increase in the O-Y-O angle is common in X₂YO₂ and XYO₃ species, and presumably results from the O···O nonbonded repulsions, which are decreased by increasing the average O···O distance, in this case to 2.34 Å.

The nitro group is twisted by 13° from the plane of the benzene ring; this twist angle is the same as that found by Trotter & Williston (1966) for the nitro groups in *m*-dinitrobenzene. The nitro group in 3-NPCB is wagging and the corrections to the N-O bond lengths are 0.03 and 0.03 Å. The two N-O distances of 1.24 and 1.26 Å are not significantly different. The average N-O distance is 1.247 Å in *p*-nitroaniline (Trueblood, Goldish & Donohue, 1961), 1.242 Å in β -p-nitrophenol (Coppens & Schmidt, 1965*a*,*b*) and 1.248 Å in *m*-dinitrobenzene (Trotter & Williston, 1966), in good agreement with our average value of 1.25 Å.

The C-N distance of 1.497 Å is a long C(aromatic)-N(nitro group) bond, but compares favorably with the values 1.493 Å found for m-dinitrobenzene and 1.490 Å reported for N-methyl-N, 2, 4, 6-tetranitroaniline by Cady (1967). However, in compounds where the resonance interaction of the nitro group and the ring is strong, the C-N bond lengths appear shorter. For example, the C-N distance is 1.460 Å in p-nitroaniline, 1.450 Å in β -p-nitrophenol and 1.450 Å in potassium picrate (Palenik, Bettman & Hughes, 1967). Although this interpretation is not completely unambiguous because the large librations of the NO₂ group reduce somewhat the accuracy of the C-N distances, it is consistent with the available data. The fact that the uncorrected C-NO₂ bond length in 4-nitrophenol is essentially the same at 90°K as at room temperature (Coppens & Schmidt, 1965a, b) indicates that the effect of thermal motion on the apparent length of this bond is not normally so large as to vitiate the above discussion.

All the interatomic distances less than 4.0 Å were calculated. The intermolecular heavy atom-heavy atom distances less than 3.3 Å and the hydrogen atom-heavy atom distances less than 2.8 Å are listed in Table 8. These distances are not unusually short and can be considered as van der Waals contacts. There are only two contacts involving O(1) which are shorter than 3.3 Å. The mean square displacement of O(1) is the largest of any atom in the structure and presumably results from the lack of restraining non-bonded contacts.

We gratefully acknowledge the help of Professor K. Conrow in preparing the sample of perchlorylbenzene and 3-nitroperchlorylbenzene and of Maryellin Rei-

Table 8. Intermolecular distances

The distance given is from atom i in the molecule specified by the parameters in Tables 1 and 2 to the atom j in the molecule specified by the letters A-F. Molecules A-F are located as follows:

$\frac{z}{y}, \frac{1}{2} + z$ + y, 1 + z	$D \frac{1}{2} + x, \ \frac{1}{2} - y, \ \frac{1}{2} + z E -x, \ 1 - y, \ \frac{1}{2} + z F -x, \ -1 - y, \ -\frac{1}{2} + z$		
Atom j	Molecule	Distance	
O(3)	A	3·25 Å	
O(3)	В	3.17	
O(1)	С	3.22	
O(3)	Α	3.25	
N	E	3.05	
O(2)	В	3.25	
O(3)	В	3.29	
O(4)	F	3.22	
H(2)	В	2.7	
O(3)	В	2.6	
O(1)	С	2.7	
O(5)	D	2.6	
	$\begin{array}{c} z \\ y, \frac{1}{2} + z \\ + y, 1 + z \\ A tom j \\ O(3) \\ O(3) \\ O(3) \\ O(1) \\ O(3) \\ N \\ O(2) \\ O(3) \\ O(4) \\ H(2) \\ O(3) \\ O(1) \\ O(5) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

MOLECULAR STRUCTURE OF 3-NITROPERCHLORYLBENZENE

necke for the illustrations, and are indebted to the Pennsalt Chemicals Corporation for the sample of perchloryl fluoride, to the U.S. Air Force Office of Scientific Research for partial support and to the UCLA and NOTS Computing Facilities for their cooperation.

References

- ANDERSEN, E. K. (1967a). Acta Cryst. 22, 188.
- ANDERSEN, E. K. (1967)b. Acta Cryst. 22, 191.
- ANDERSEN, E. K. (1967c). Acta Cryst 22, 196.
- BAILEY, A. S. & PROUT, C. K. (1965). J. Chem. Soc. p. 4867.
- BREGMAN, J., LEISEROWITZ, L. & OSAKI, K. (1964). J. Chem. Soc. p. 2086.
- BREGMAN, J., LEISEROWITZ, L. & SCHMIDT, G. M. J. (1964). J. Chem. Soc. p. 2068.
- BUSING, W. R. & LEVY, H. A. (1964). Acta Cryst. 17, 142.
- CADY, H. H. (1967). Acta Cryst. 23, 601.
- CALLERI, M. & SPEAKMAN, J. C. (1964). Acta Cryst. 17, 1097.
- CARTER, O. L., MCPHAIL, A. T. & SIM, G. A. (1966). J. Chem. Soc. (A) p.822.
- CHAO, G. Y. & MCCULLOUGH, J. D. (1962). Acta Cryst. 15, 887.
- CHU, S. S. C., JEFFREY, G. A. & SAKURAI, T. (1962). Acta Cryst. 15, 661.
- COPPENS, P. & SCHMIDT, G. M. J. (1965a). Acta Cryst. 18, 62.
- COPPENS, P. & SCHMIDT, G. M. J. (1965b). Acta Cryst. 18, 654.
- Cox, E. G., CRUICKSHANK, D. W. J. & SMITH, J. A. S. (1958). Proc. Roy. Soc. A 247, 1.
- CRUICKSHANK, D. W. J. (1961a). Acta Cryst. 14, 896.
- CRUICKSHANK, D. W. J. (1961b). J. Chem. Soc. p. 5486.
- CRUICKSHANK, D. W. J. & McDonald, W. S. (1967). Acta Cryst. 23, 90.
- FERGUSON, G & ISLAM, K.M.S. (1966). J. Chem. Soc. p. 593.
- FERGUSON, G. & SIM, G. A. (1961). Acta Cryst. 14, 1262.
- FERGUSON, G. & SIM, G. A. (1962). J. Chem. Soc. p. 1767.
- FOLTING, K., LIPSCOMB, W. N. & JERSLEV, B. (1964). Acta Cryst. 17, 1263.
- FRASSON, E. GARBUGLIO, C. & BEZZI, S. (1959). Acta Cryst. 12, 126.
- GAFNER, G. & HERBSTEIN, F. H. (1962). Acta Cryst. 15, 1081.
- GAULTIER, J. & HAUW, C. (1965a). Acta Cryst. 19, 580.
- GAULTIER, J. & HAUW, C. (1965b). Acta Cryst. 19, 585.
- INMAN, C. E., OESTERLING, R. E. & TYCZKOWSKI, E. A. (1958). J. Amer. Chem. Soc. 80, 5286.

Fig.4. A view of the structure illustrating the molecular packing. The positive direction of c is toward the viewer.

- International Tables for X-ray Crystallography (1962). Vol. III, p. 211. Birmingham: Kynoch Press.
- LEUNG, Y. & MARSH, R. E. (1958). Acta Cryst. 11, 17.
- McPhail, A. T. & Sim, G. A. (1965). J. Chem. Soc. p. 227.
- MCWEENY, R. (1951). Acta Cryst. 5, 513.
- ORIOLI, P. L., LINGAFELTER, E. C. & BROWN, B. W. (1964). Acta Cryst. 17, 1113.
- PALENIK, G. J. (1965). Acta Cryst. 19, 47.
- PALENIK, G. J., BETTMAN, M. & HUGHES, E. W. (1967). Private communication.
- Sakurai, T., Sundaralingam, M. & Jeffrey, G. A. (1963). Acta Cryst. 16, 354.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 63.
- SIME, J. G. & ABRAHAMS, S. C. (1960). Acta Cryst. 13, 1.
- STOICHEFF, B. P. (1954). Canad. J. Phys. 32, 339.
- TROTTER, J. (1959). Acta Cryst. 12, 54.
- TROTTER, J. & WILLISTON, C. S. (1966). Acta Cryst. 21, 285.
- TRUEBLOOD, K. N., GOLDISH, E. & DONOHUE, J. (1961). Acta Cryst. 14, 1009.
- TRUTER, M., CRUICKSHANK, D. W. J. & JEFFREY, G. A. (1960). Acta Cryst. 13, 855.

1146